On bounding the chromatic number of L-graphs
نویسندگان
چکیده
منابع مشابه
The locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملThe locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملBounding the Fractional Chromatic Number of KDelta-Free Graphs
King, Lu, and Peng recently proved that for ∆ ≥ 4, any K∆-free graph with maximum degree ∆ has fractional chromatic number at most ∆− 2 67 unless it is isomorphic to C5 K2 or C 8 . Using a different approach we give improved bounds for ∆ ≥ 6 and pose several related conjectures. Our proof relies on a weighted local generalization of the fractional relaxation of Reed’s ω, ∆, χ conjecture.
متن کاملBounding cochordal cover number of graphs via vertex stretching
It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...
متن کاملThe Distant-l Chromatic Number of Random Geometric Graphs
A random geometric graph Gn is given by picking n vertices in R d independently under a common bounded probability distribution, with two vertices adjacent if and only if their l-distance is at most rn. We investigate the distant-l chromatic number χl(Gn) of Gn for l ≥ 1. Complete picture of the ratios of χl(Gn) to the chromatic number χ(Gn) are given in the sense of almost sure convergence.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1996
ISSN: 0012-365X
DOI: 10.1016/0012-365x(95)00316-o